

(*) NOTA:
CHUMBADOR MECÂNICO TIPO PARAFUSO COM
ROSCA INTERNA E CORPO DE DIÂMETRO DE 1/4"
E ROSCA DE LAMINAÇÃO (SEM EXPANSÃO)
DIÂMETRO INTERNO: 1/4"- 20 UNC
REF.: "OVER HEAD 1516 OU 1913" DA HARD

FUNDAÇÃO UNIVERNIDADE INSTITUTO CENTRA END.: CENTRO DE PLANEJAMENTO ETAPA PROJETO EXECUTIVO TÍTULO SANITÁRIOS ICC BT DETALHES GERAIS	AL DE C OSCAR NIEME ESCAL	CIÊNCIA Eyer A indic.		os 12/2017 ART DISCIPLINA EXAUSTÃO
G B R engenharia		Cent	on Luiz, 1118, cj. 901 ro - Porto Alegre -RS el/Fax (51)3092-3800	FOLHA CLIO2/O2 ARQUIVO OS12_UNB_SANITÁRIOS_CLI_02-02_VC.dwg
QUADRO DE ÁREAS:			LOCALIZAÇÃO	SEM ESCALA:
ÁREA DE INTERVENÇÃO	A=69	,70m²		
responsável técni	CO:			
RESPONSÁVEL TÉCNICO: ENG. TIAGO JOSÉ BULLA CREA/RS: 149.136 COORDENADOR RJ: ENG. ALEXANDRE LEITE RIBEIRO NUNES CREA RS: 180.750	ELABORAÇÃO: ENG. TIAGO J CREA/RS: 14 DESENHO: JOEL			
QUADRO DE REVISÃO)		•	
D 12/04/2018 REVISÃO CONFO	RME MANUAL	SFAP		JOEL – CBR
C 26/03/2018 CONFORME O				JOEL - CBR
Rev. Data Des	scrição			Elaboração
DOCUMENTOS DE RE	Ferênc	CIA:		
Nome	Data		Descrição	

Data: abril de 2018 Versão: C Página: 1 de 8

MEMÓRIA DE CÁLCULO SISTEMA DE EXAUSTÃO DOS SANITÁRIOS ICC BT 567-573 OES N. 12/2017

Data: abril de 2018 Versão: C Página: 2 de 8

DADOS DA OBRA

NOME: EXAUSTÃO DOS SANITÁRIOS - ICC BT 567-573

ENDEREÇO: CENTRO DE PLANEJAMENTO OSCAR NIEMEYER

Proprietário: FUNDAÇÃO UNIVERSIDADE DE BRASÍLIA

DADOS DA EDIFICAÇÃO

TIPO: SISTEMA DE EXAUSTÃO PARA SANITÁRIOS

ÁREA DE INTERVENÇÃO: 69,70 m²

Data: abril de 2018 Versão: C Página: 3 de 8

SUMÁRIO

1.	OBJETIVOS	4
2.	NORMAS E BIBLIOGRAFIAS APLICÁVEIS	5
3.	BASE DE CÁLCULOS	6
3	3.1. Exaustão	6
3	3.2. Cálculo Volume de Trocas	6
	3.3. Volumes de Trocas Adotados	
3	3.4. Dimensionamento da rede de dutos	
•	3.5 Unidade Evaustora Adotada	7

Data: abril de 2018 Versão: C Página: 4 de 8

1. OBJETIVOS

Este documento tem por objetivo apresentar a metodologia utilizada e os resultados obtidos no dimensionamento do sistema de exaustão dos sanitários para o prédio.

Data: abril de 2018 Versão: C Página: 5 de 8

2. NORMAS E BIBLIOGRAFIAS APLICÁVEIS

Aplicam-se os seguintes normativos e diretrizes para o desenvolvimento de projetos, cálculos e execução de obras e instalações de AVAC:

- NBR 16401 Instalações de Ar Condicionado Sistemas Centrais e Unitários;
- NBR 10067 Princípios Gerais de Representação em Desenho Técnico;
- Portaria Nº 3.523/GM, de 18/08/1999 do Ministério da Saúde;
- Nº 176 de 25/10/2000 da ANVISA;
- Resolução № 009 de 16/01/2003 da ANVISA;
- NBR 10152 Níveis de Ruído para Conforto Acústico;
- Catálogos, ITs e Recomendações de fabricantes dos materiais e equipamentos;
- Práticas de Projeto, Construção e Manutenção de Edifícios Públicos Federais;
- Códigos, Leis, Decretos, Portarias e Normas. Federais Estaduais e Municipais, inclusive normas de concessionárias de serviços públicos.

Estes documentos são complementados pelas normas e artigos abaixo, emitidos por organizações internacionais reconhecidas, não estando limitado a esta lista. São utilizados para situações não previstas nas normas nacionais ou onde, a cargo do projetista ou solicitação do cliente, julgar-se necessário aplicar diretrizes de maior exigência.

- AHRI Air-Conditioning, Heating and Refrigeration Institute;
- ANSI American National Standards Institute;
- ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers;
- ASME American Society of Mechanical Engineers;
- SMACNA Sheet Metal and Air Conditioning Contractors' National Association;
- Catálogos e Instruções técnicas de fabricantes.

Data: abril de 2018 Versão: C Página: 6 de 8

3. BASE DE CÁLCULOS

Na sequência são apresentadas as condições e parâmetros principais utilizados no dimensionamento do sistema de ar condicionado para a edificação em estudo

3.1. Exaustão

Para o dimensionamento do sistema de exaustão de ar dos sanitários, consideram-se as taxas de renovação de ar máxima conforme tabela abaixo.

TABELA DE RENOVAÇÕES *							
Ambiente	Trocas e ar por hora						
Lavabo	7 – 14						
Banheiro	4 – 7						
Quarto	2 – 4						
Cozinha	7 – 11						
Escritório	3 – 6						
Sala de reunião	5 – 8						
Bar	14 – 22						
Garagem	3 – 8						
Estabelecimentos comerciais	6 - 9						

3.2. Cálculo Volume de Trocas

Sanitário PNE Masculino: ÁREA: 4,09 m2

PÉ DIREITO: 2,43 m

VOLUME: 4.09 m2 x 2,43 m= 9,93 m3

Trocas de ar conforme tabela 1 da ABNT NBR 16401-3:2008 = 14

Volume x Troca de ar => 9,93m³ x 14 = 139,02 m³/h

Sanitário PNE Feminino: ÁREA: 4,09 m2

PÈ DIREITO: 2,43 m

VOLUME: 4.09 m2 x 2,43 m= 9,93 m3

Trocas de ar conforme tabela 1 da ABNT NBR 16401-3:2008 = 14

Volume x Troca de ar => $9,93m^3$ x 14 = 139,02 m^3/h

Data: abril de 2018 Versão: C Página: 7 de 8

DML: ÁREA: 4,21 m2 PÉ DIREITO: 2,43 m

VOLUME: 4.21 m2 x 2,43 m= 10,23 m3

Trocas de ar conforme tabela 1 da ABNT NBR 16401-3:2008 = 14

Volume x Troca de ar => 10,23m³ x 14 = 143,22 m³/h

3.3. Volumes de Trocas Adotados

Sanitário PNE Masculino: 150 m³/h Sanitário PNE Feminino: 150 m³/h

DML: 150 m³/h

3.4. Dimensionamento da rede de dutos

O dimensionamento da rede de dutos de exaustão de ar para o sanitário masculino, sanitário feminino e DML foi realizado através do Método de Fricção Constante,

Na sequência será apresentado uma tabela ilustrando os parâmetros de cálculo utilizado e os resultados obtidos, tais como: trecho do duto, vazão de ar, velocidade no trecho, comprimento do trecho, ângulo das curvas, diâmetro equivalente calculado e os diâmetros utilizados.

Local	Trecho	Velocidade	Comprimento	Vazão	Vazão	Ângulo (°)	Perda de	Ø
		(m/s)	(m)	(m^3/h)	(l/s)		Carga (Pa)	(mm)
PNE	0-1	6,00	8,70	150	41,67	90	5,00	128,00
Masc.								
PNE	0-1	6,00	9,25	150	41,67	90	5,00	129,00
Fem.								
DML	0-1	6,00	10,90	150	41,67	90	5,00	132,00

Com os resultados obtidos de diâmetro equivalente, foi escolhido o diâmetro mais próximo comercialmente igual a 150 mm.

3.5. Unidade Exaustora Adotada

Sanitário PNE Masculino: 150 m³/h

Exaustor axial, IP-45, motor 220 V, Vazão: 150 m³/h

Pressão mínima requerida: 60 Pa.

Modelo de referência: Silent-300 CRZ da Soler Palau, ou equivalente

Sanitário PNE Feminino: 150 m³/h

Exaustor axial, IP-45, motor 220 V, Vazão: 150 m³/h

Pressão mínima requerida: 60 Pa.

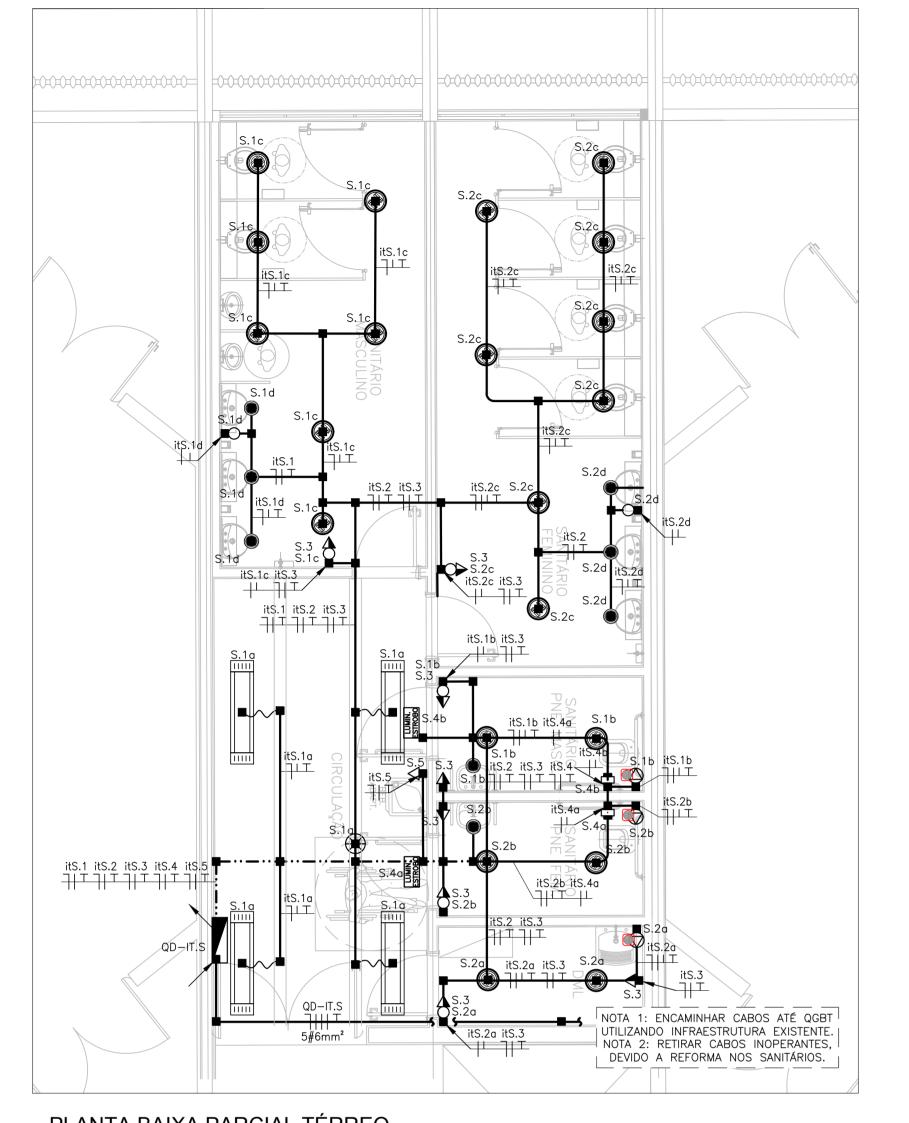
Modelo de referência: Silent-300 CRZ da Soler Palau, ou equivalente

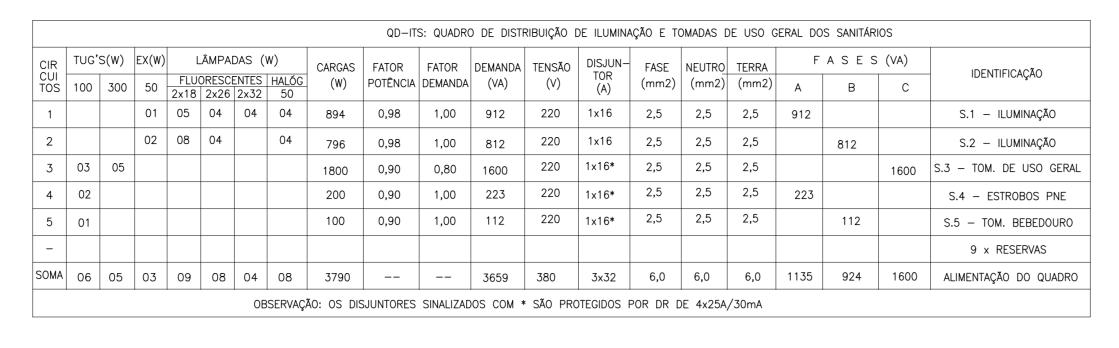
Rua Washington Luiz, n 1118, sala 901 – Centro – Porto Alegre/RS - CEP 90010-460 – Tel (51) 3092.3800

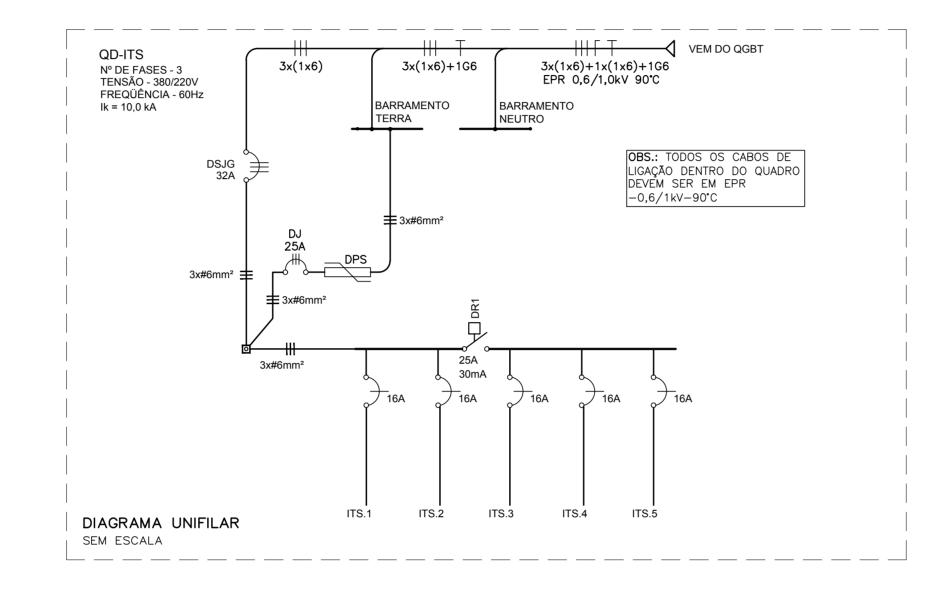
Data: abril de 2018 Versão: C Página: 8 de 8

DML: 150 m³/h

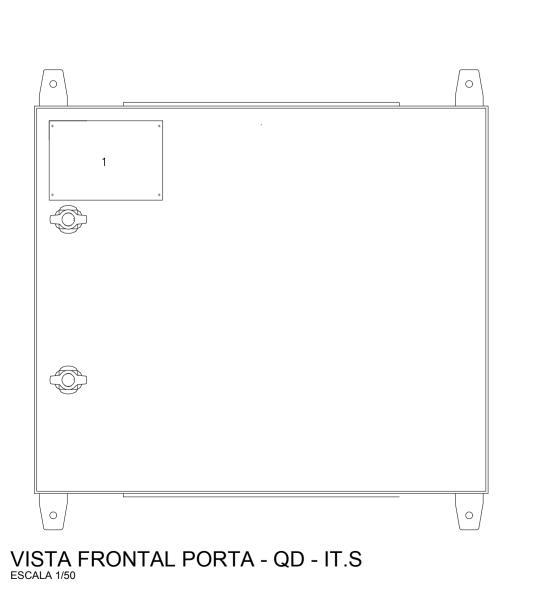
Exaustor axial, IP-45, motor 220 V, Vazão: 150 m³/h

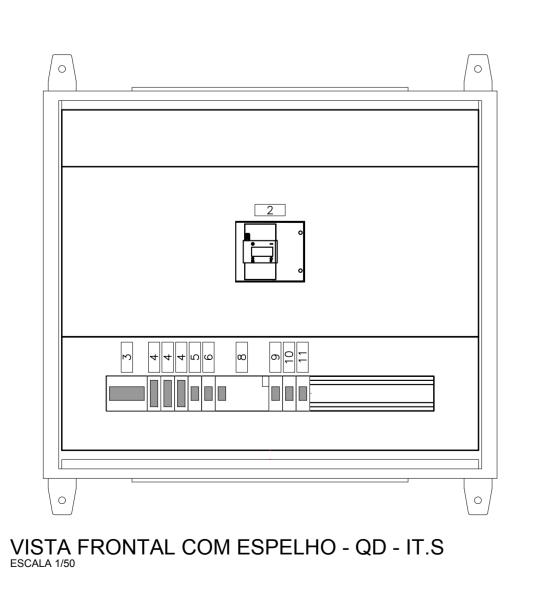

Pressão mínima requerida: 60 Pa.

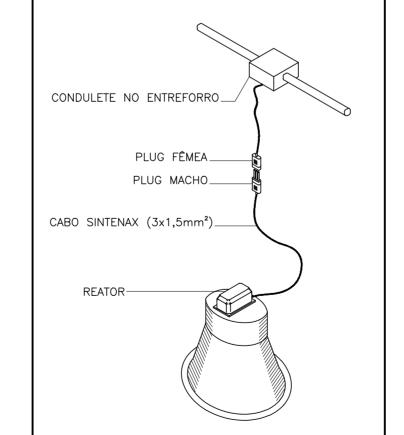

Modelo de referência: Silent-300 CRZ da Soler Palau, ou equivalente


Type Bund

Eng. Tiago José Bulla


CREA RS 149.136





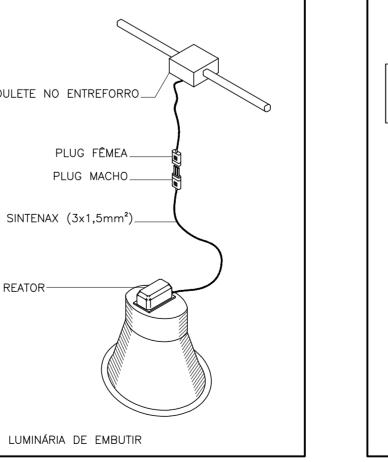
ETIQUETA ACRÍLICA

MIOLO PRETO

NEUTRO FASE

MIOLO

TERRA


LEG=LEGENDA DO PONTO

COMO CONSTA NA PLANTA

TOMADAS COMUM 20A/220V

DE ELÉTRICA COMUM

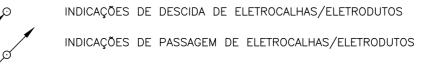
DETALHES LIGAÇÃO DE LUMINÁRIAS CIRCULARES DE EMBUTIR

DETALHE DA INSTALAÇÃO DE LUMINÁRIA FLUORESCENTE DE EMBUTIR EM FORRO DE GESSO

_PLUG MACHO/FEMEA

LUMINARIA DE EMBUTIR

ESTRUTURA DE CONCRETO


_CAIXA PASS. \QCI

RABICHO: CABO SINTENAX 3x1.5mm2

FORRO DE GESSO

__4"x4"

SIMBOLOGIA										
1										
Q	INDICAÇÕES DE SUBIDA DE ELETROCALHAS/ELETRODUTOS									
\odot	INDICAÇÕES DE DESCIDA DE ELETROCALHAS/ELETRODUTOS									

- 1. TODAS AS CONEXÕES ENTRE ELETRODUTOS E ELETROCALHAS DEVERÃO SER FEITAS ATRAVÉS DE SAÍDA PARA ELETRODUTO FIXADA NA ELETROCALHA OU PERFILADO.
- 2. NAS INTERLIGAÇÕES ENTRE ELETRODUTOS, ELETROCALHAS, PERFILADOS E LEITOS DEVERÃO SER UTILIZADOS CONEXÕES APROPRIADAS PARA ESTE FIM, FORNECIDAS PELO FABRICANTE DOS
- 3. ELETROCALHAS E PERFILADOS INSTALADOS DEVERÃO POSSUIR TAMPA DE FECHAMENTO. 4. JUNTO COM O CD DEVERÁ SER DEIXADO UM CONJUNTO DE CÓPIAS DESTE PROJETO.
- 5. TODOS OS DISJUNTORES GERAIS E QUADROS DEVEM POSSUIR DISPOSITIVOS PARA CADEADO, CONFORME NORMA NR-10.
- 6. A MONTAGEM DA INFRAESTRUTURA DE ELÉTRICA DEVERÁ SER FEITA PREFERENCIALMENTE APÓS
- A MONTAGEM DA INFRAESTRUTURA MECÂNCIA (AR CONDICIONADO). 7. A FIXAÇÃO DA INFRAESTRUTURA DE ELÉTRICA (ELETRODUTOS, ELETROCALHAS E PERFILADOS) DEVERÁ SER INDEPENDENTE DO FORRO E DA INFRAESTRUTURA DO AR CONDICIONADO.
- 8. É IMPORTANTE RESSALTAR QUE PARA UMA MELHOR COMPREENSÃO DESTE PROJETO, SE FAZ NECESSÁRIO ANALISAR TODAS AS PLANTAS (INCLUINDO AS DE DETALHES E DO PROJETO ELÉTRICO), ATENTANDO-SE PARA AS CONVENÇÕES E NOTAS, BEM COMO LER ATENTAMENTE O MEMORIAL DESCRITIVO E A LISTAGEM DE MATERIAIS.

PADRÕES

- 1. MEDIDAS DE ELETRODUTOS, ELETROCALHAS, LEITOS E CAIXAS DE PASSAGEM EM MILÍMETROS (mm) 2. SEÇÃO DOS CONDUTORES EM MILÍMETROS QUADRADOS (mm²)
- 3. PARA OS CIRCUITOS DE TOMADAS [ENERGIA COMUM] À SEÇÃO A SER CONSIDERADA DEVERÁ SER DE **#2,5mm²** QUANDO NÃO INDICADA
- 4. ISOLAÇÃO DOS CONDUTORES FASE E NEUTRO DE CIRCUITOS DE DISTRIBUIÇÃO **EMBUTIDOS EM** PISO E DE CIRCUITOS EM ÁREA EXTERNA IGUAL A 0,6/1kV 70° QUANDO NÃO INDICADA
- 5. ISOLAÇÃO DOS CONDUTORES FASE E NEUTRO DE CIRCUITOS DE DISTRIBUIÇÃO NÃO EMBUTIDOS EM PISO IGUAL A 750V 70° QUANDO NÃO INDICADA
- 6. ISOLAÇÃO DE TODOS OS CONDUTORES TERRA IGUAL A 750V 70° E COR VERDE 7. SEÇÃO NOMINAL DE ELETRODUTOS CONFORME APRESENTADO ABAIXO:

PVC Ø20mm = Ø1/2" Ø25mm = Ø3/4" Ø32mm = Ø1" Ø40mm = Ø1.1/4" Ø50mm = Ø1.1/2" Ø60mm = Ø2" Ø75mm = Ø2.1/2" Ø85mm = Ø3"	F.G./F.G.F. Ø20mm = Ø3/4" Ø25mm = Ø1" Ø32mm = Ø1¼" Ø40mm = Ø1½" Ø50mm = Ø2" Ø65mm = Ø2½" Ø80mm = Ø3" Ø100mm = Ø4"	PEAD ø30mm = Ø1¼" ø40mm = Ø1½" ø50mm = Ø2" ø75mm = Ø3" ø100mm = Ø4" ø125mm = Ø5" ø150mm = Ø6"
$\emptyset 110mm = \emptyset 4$ "		

- 8. DEVERÃO SER INSTALDOS TERMINAIS DE PRESSÃO/OLHAL NOS CIRCUITOS ELÉTRICOS QUANDO LIGADOS COM DISJUNTORES, TOMADAS/INTERRUPTORES OU ARTEFATOS DE ILUMINAÇÃO E
- 9. UTILIZAR FITA PLÁSTICA COLORIDA OU CONDUTOR COM A SEGUINTE COR NA SUA ISOLAÇÃO
- PARA IDENTIFICAÇÃO DOS CONDUTORES: FASES R/S/T COMUM: PRETO
- FASES R/S/T ESTAB.: VERMELHO NEUTRO CÓMUM:
- NEUTRO ESTABILIZADO: AZUL-CLARO RETORNO: PRETO COM IDENTIFICAÇÃO NAS EXTREMIDADES
- VERDE OU VERDE-AMARELO
- 10. PADRÃO UTILIZADO PARA IDENTIFICAR A BITOLA DOS CIRCUITOS: N#XX-YYY • N=NÚMERO DE PERNAS (EX: 3 = 3 PERNAS [F/N/PE] ou 5 PERNAS [R/S/T/N/PE])
- X=BITOLA DO CONDUTOR EM mm² (EX: 4 = 4,0 mm²) Y=MATERIAL DA ISOLAÇÃO (HEPR OU PVC) - PVC QUANDO NÃO EXPLICITADO

SIMBOLO	<u>GIA</u>	QUANT.	UNID.
	PAINEL DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA INSTALAÇÃO DE EMBUTIR OU SOBREPOR, CONFORME APLICAÇÃO	1	pç
	ELETRODUTO ROSQUEÁVEL EM PVC ANTICHAMA APARENTE, INSTALADO NO TETO, NO ENTREFORRO, OU NA PAREDE NA ALTURA DAS TOMADAS/INTERRUPTORES, Ø25mm	100	m
	ELETRODUTO ROSQUEÁVEL EM PVC ANTICHAMA APARENTE, INSTALADO NO TETO, NO ENTREFORRO, OU NA PAREDE NA ALTURA DAS TOMADAS/INTERRUPTORES, Ø32mm	9	m
CIRC.	CONDUTORES NEUTRO, FASE, RETORNO E TERRA, RESPECTIVAMENTE, BITOLA 2,5mm², QUANDO NÃO INDICADO	470	m
~~	"RABICHO" DE CABO PP 3x1,5mm² PARA INTERLIGAÇÃO DAS LUMINÁRIAS COM PLUG MACHO/FÊMEA 10A/250V 2P+T (NBR 14136)	33	pç
	LUMINÁRIA DE SOBREPOR COMPLETA PARA 2 LÂMPADAS FLUORESCENTES TUBULARES DE 32W. REATOR DUPLO DE ALTA FREQÜÊNCIA, ALTO FATOR DE POTÊNCIA E BAIXA TAXA DE DISTORÇÃO HARMÔNICA	4	pç
	LUMINÁRIA CILÍNDRICA DE EMBUTIR P/ LÂMPADAS FLUORESCENTES COMPACTAS 2x26W, BASE 4 PINOS, C/ REFLETOR DE ALUMÍNIO E REATOR EXTERNO	10	pç
	LUMINÁRIA CILÍNDRICA DE EMBUTIR P/ LÂMPADAS FLUORESCENTES COMPACTAS 2x18W, BASE 4 PINOS, C/ REFLETOR DE ALUMÍNIO E REATOR EXTERNO	11	pç
	LUMINÁRIA CILÍNDRICA DE EMBUTIR, FOCO ORIENTÁVEL, PARA UMA LÂMPADA HALÓGENA PAR 20 — 50W/220V COMPLETA COM LÂMPADA.	8	pç
LUMIN. ESTROBO	LUMINÁRIA ESTROBOSCÓPICA PARA DEFICIENTES FÍSICOS INSTALADA: A 2300mm DO PISO ACABADO QUANDO NÃO INDICADO	2	pç
<u> </u>	BOTOEIRA PARA ACIONAMENTO DE SINALIZADORES AUDIOVISUAIS PARA DEFICIENTES FÍSICOS FIXADA EM CAIXA DE EMBUTIR DE F.E. 50x100mm, h=400mm DO PISO ACABADO (SALVO INDICAÇÃO)	2	pç
\triangleright	TOMADA ENERGIA COMUM: 100VA QUANDO NÃO INDICADO MODELO: 20A/250V 2P+T (NBR 14136) INSTALADA: A 300mm DO PISO ACABADO QUANDO NÃO INDICADO	1	pç
>	TOMADA ENERGIA COMUM: 100VA QUANDO NÃO INDICADO MODELO: 20A/250V 2P+T (NBR 14136) INSTALADA: A 1100mm DO PISO ACABADO QUANDO NÃO INDICADO	8	pç
(PONTO DE FORÇA DE ENERGIA ELÉTRICA COMUM: POTÊNCIA INDICADA CONDULETE COM ESPERA DE CABOS APARENTE, INSTALADO NA ALTURA DO EQUIPAMENTO.	3	pç
0	INTERRUPTOR C/ UMA TECLA DE SEÇÃO SIMPLES 10A/250V h=1100mm DO PISO ACABADO QUANDO NÃO INDICADO	7	pç
₩	SENSOR DE PRESENÇA PARA ILUMINAÇÃO DE SOBREPOR TEMPORIZADO COBERTURA DE 360° (R=3m), 250V COM FUSÍVEL DE PROTEÇÃO 5A, INSTALADO SOB O FORRO, QUANDO APLICÁVEL	1	pç
•	CONDULETE DE PVC TÍPICO COM 5 ENTRADAS; SEÇÃO CONFORME TUBULAÇÃO NA ALTURA DOS EQUIPAMENTOS/TUBULAÇÃO QUANDO NÃO INDICADO	44	pç

Descrição

Data

Nome

Data: abril de 2018 Revisão: 00 Página: 1 de 10

MEMORIAL DE CÁLCULO INSTALAÇÃO ELÉTRICA DOS SANITÁRIOS **ICC BT 567-573** OES N. 12/2017

Data: abril de 2018 Revisão: 00 Página: 2 de 10

DADOS DA OBRA

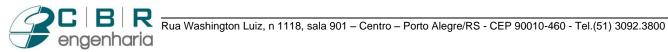
NOME: SANITÁRIOS – ICC BT 567-573

ENDEREÇO: CENTRO DE PLANEJAMENTO OSCAR NIEMEYER

PROPRIETÁRIO: FUNDAÇÃO UNIVERSIDADE DE BRASÍLIA

DADOS DA EDIFICAÇÃO

TIPO: INSTALAÇÃO ELÉTRICA PARA SANITÁRIOS


ÁREA DE INTERVENÇÃO: 62,00 m²

Revisão: 00 Página: 3 de 10 Data: abril de 2018

1.	PREMISSAS E PARÂMETROS DE PROJETO	4
2.	ALIMENTAÇÃO ELÉTRICA	4
3.	ESQUEMA DE ATERRAMENTO	4
4.	QUEDA DE TENSÃO	4
5.	TEMPERATURA AMBIENTE	4
6.	DIVISÃO DAS INSTALAÇÕES	4
7.	Composição e Tabela de Cargas	5
7.1	. Equipamentos de Iluminação	5
7.2	. Dimensionamento do QD-ITS	6
7.3	. Fatores de Projeto	6
8.	PARÂMETROS E DIMENSIONAMENTO DO SISTEMA DE ILUMINAÇÃO	6
8.1	. Parâmetros de Projeto	6
9.	Dimensionamento de Condutores e Queda de Tensão	7
10.	Lista de Anexos	
11.	Normas de Referência:	7

Data: abril de 2018 Revisão: 00 Página: 4 de 10

1. PREMISSAS E PARÂMETROS DE PROJETO

- A. A instalação projetada terá fins comerciais e terá utilização final como Universidade.
- B. No tocante ao dimensionamento das instalações elétricas, foram considerados os parâmetros abaixo relacionados.

2. ALIMENTAÇÃO ELÉTRICA

- Tensão Secundária Nominal 380V / 220 V (entre fases e entre fase e neutro) Faixa II (50 V < U <= 1000 V entre fases)
- Frequência Nominal 60 Hz;
- Corrente de curto-circuito no ponto de entrega: Conforme Concessionária Local

3. ESQUEMA DE ATERRAMENTO

- A. A instalação possui um ponto de alimentação diretamente aterrado (neutro do secundário do transformador) sendo as massas ligadas a este ponto através de condutores de proteção, configurando um esquema TN.
- B. No caso específico desta instalação a função do condutor neutro e do condutor de proteção serão executados por alimentadores distintos, caracterizando um esquema TN-S.

4. QUEDA DE TENSÃO

- A. A instalação é atendida por ramal aéreo de média tensão (> 1 kV) terá queda de tensão máxima de 4 % desde a medição até o circuito terminal.
- B. Abaixo indicamos os valores de queda de tensão percentual considerados, baseado no diagrama unifilar da instalação:

5. TEMPERATURA AMBIENTE

- A. Como temperatura ambiente foi considerada a temperatura média, obtida através do site do INMET, para a região baseada nos últimos doze meses.
- B. A temperatura média anual do Brasil considerada é de 22,9°C.
- C. Este fator foi considerado como índice para cálculos de correção de agrupamento de condutores e de ajuste dos dispositivos de proteção, caso a temperatura de ajuste padrão fornecida pelo fabricante seja diferente da considerada neste cálculo.

6. DIVISÃO DAS INSTALAÇÕES

- A. A instalação será dividida de acordo com as características das cargas, nos seguintes circuitos de distribuição:
 - Iluminação;
 - Pontos de Tomadas;

Data: abril de 2018 Revisão: 00 Página: 5 de 10

7. COMPOSIÇÃO E TABELA DE CARGAS

- A. Para o projeto em questão foram consideradas as seguintes potências unitárias e respectivos fatores de potência.
- B. Os parâmetros a seguir baseiam-se nas informações fornecidas pelos fabricantes e definições estipuladas pelo projetista

Item	Característica da Carga	Local da Instalação	Potência Unit. Média (VA)	FP
1	Exaustores	Sanitários PNE e DML	50	0,98
2	Estrobo	Sanitários PNE	100	0,9
3	TUG (Tomadas de uso geral)	Todas as áreas	300	0,9
4	TUG (Tomadas de uso geral)	Sanitários PNE e DML	100	0,9

Obs.:

- As tomadas para alimentação de equipamentos específicos, tais como ar condicionado tipo split, serão consideradas como Tomadas de Uso Específico (TUE) e terão a potência nominal, FP, nº de fases (nº de condutores) dimensionados de acordo com as características do equipamento, a serem fornecidas pelo projetista de ar condicionado ou fabricante do aparelho.
- 2. As potências nominais acima indicadas representam uma média de parâmetros de fabricantes de equipamentos e aparelhos com características similares e de medições efetuadas em campo.
- 3. Para circuitos de tomadas de uso geral será considerado um fator de Demanda de 80%.

7.1. Equipamentos de Iluminação

		Lumina	árias		Dispositivo de Partida				
Item	Modelo	Tipo	Rendimento	N° lâmpadas /		Quantidade	Fator de	THD	
iteiii	Modelo	Про	(%)	unidade	Tipo	/ unidade	Eficácia	(%)	
1	Com aleta	Sobrepor	74	2x T8 (32W)	Reator	1	1,53	<20	
	Com aleta	Sobreboi	/4	2X 10 (32VV)	Eletrônico	T	1,55	\20	
2	Sem aleta	Embutir	62	2x FC (26W)	Reator	1	1 05	<20	
	Sem aleta	EIIIDUUI	02	2X FC (20VV)	Eletrônico	T	1,85	\20	
3	Sem aleta	Embutir	62	2x FC (18W)	Reator	1	2 56	<20	
3	Sem aleta	EIIIDUUI	02	2X FC (10VV)	Eletrônico	1	2,56	<20	
4	Sem aleta	Embutir	75	PAR 20 (50W)	-	-	1	-	

Data: abril de 2018 Revisão: 00 Página: 6 de 10

7.2. Dimensionamento do QD-ITS

	QD-ITS: QUADRO DE DISTRIBUIÇÃO DE ILUMINAÇÃO E TOMADAS DE USO GERAL DOS SANITÁRIOS																			
CIR			EX(W)	LÂMPADAS (W)		LÂMPADAS (W)		CARGAS	FATOR	FATOR	DEMANDA	TENSÃO	DISJUN-	FASE	NEUTRO	TERRA	F	ASES	(VA)	- IDENTIFICAÇÃO
TOS	100	300	50	FLU0 2x18	2x26	ENTES 2x32	HALÓG 50	(W)	POTÊNCIA	DEMANDA	(VA)	(V)	(A)	TOR (mm2)		(mm2)	А	В	С	IDENTIFICAÇÃO
1			01	05	04	04	04	894	0,98	1,00	912	220	1x16	2,5	2,5	2,5	912			S.1 - ILUMINAÇÃO
2			02	80	04		04	796	0,98	1,00	812	220	1x16	2,5	2,5	2,5		812		S.2 - ILUMINAÇÃO
3	03	05						1800	0,90	0,80	1600	220	1x16*	2,5	2,5	2,5			1600	S.3 - TOM. DE USO GERAL
4	02							200	0,90	1,00	223	220	1x16*	2,5	2,5	2,5	223			S.4 - ESTROBOS PNE
5	01							100	0,90	1,00	112	220	1x16*	2,5	2,5	2,5		112		S.5 - TOM. BEBEDOURO
-																				9 x RESERVAS
SOMA	06	05	03	09	08	04	08	3790			3659	380	3x32	6,0	6,0	6,0	1135	924	1600	ALIMENTAÇÃO DO QUADRO
	OBSERVAÇÃO: OS DISJUNTORES SINALIZADOS COM * SÃO PROTEGIDOS POR DR DE 4x25A/30mA																			

1. A potencia instalada é de 4,058 kVA e a demandada é de 3,659 kVA.

7.3. Fatores de Projeto

- A. No projeto em questão foram considerados os seguintes fatores de projeto:
- Fator de Utilização para Equipamentos específicos: 1
- Taxa de terceira harmônica: < 15%
- Fator Fh para determinação da Corrente de Neutro: 1
- Fator de agrupamento máximo de circuitos instalados em Eletrodutos: 0,6

8. PARÂMETROS E DIMENSIONAMENTO DO SISTEMA DE ILUMINAÇÃO

 A. Norma de Referência: NBR ISSO/CIE 8995-1 Iluminação de Ambientes de Trabalho - Data de Publicação: 2013

Tipo de ambiente, tarefa ou atividade	Em lux	UGRL	Ra
Áreas de circulação e corredors	100	28	48
Vestiários, banheiros, toaletes	200	25	80

Sendo:

- Em, lux = ilumância mantida;
- UGRL = índice limite de ofuscamento unificado;
- Ra = índice de reprodução de cor mínimo.

8.1. Parâmetros de Projeto

- A. Vide Anexo 1
- B. OBSERVAÇÃO: Nem todos os modelos de luminárias utilizados no projeto existem no software. Assim, para efeitos de cálculo, utiliza-se uma luminária de um modelo diferente, mas com as mesmas características daquela definida no projeto. Por isso não se deve utilizar o memorial de cálculo como referência para as luminárias, mas sim os modelos descritos e especificados no projeto.

Data: abril de 2018 Revisão: 00 Página: 7 de 10

9. DIMENSIONAMENTO DE CONDUTORES E QUEDA DE TENSÃO

	Resultados		
1	Software utilizado	PRYSMIAN DCE	
2	2 Norma de Referência NBR 5410 - Instalações Elétr Baixa Tensão		
3	Data de Publicação	09/2004	
4	Tabela de resultados	Vide Anexo 2	

10. LISTA DE ANEXOS

- Anexo 01 Cálculo Luminotécnico
- Anexo 02 Dimensionamento de Circuitos Elétricos

11. NORMAS DE REFERÊNCIA:

- NBR 5410 Instalações Elétricas de Baixa Tensão
 - Data de Publicação: 09/2004
- NBR ISSO/CIE 8995-1 Iluminação de Ambientes de Trabalho
 - Data de Publicação: 03/2013
- Norma Regulamentadora do Ministério do Trabalho NR 10 Segurança em Instalações e Serviços em Eletricidade
 - Data de Publicação: 12/2004

Data: abril de 2018 Revisão: 00 Página: 8 de 10

ANEXO 01 - CÁLCULO LUMINOTÉCNICO

Table of contents

UNB - SANITARIOS	
Luminaire parts list	3
Control group commissioning	4
UNB - SANITÁRIOS	
Lumicenter Lighting - EF08-E226VJ (2xFluorescente compacta 26W)	5
Lumicenter Lighting Group - FAA20-E228 (2xFluorescente Tubular)	8
UNIB - SANITÁRIOS	
Edifício 1	
Andar 1	
Sala 1	
Room summary	
Plano de uso 1 / Perpendicular illuminance (adaptive)	12

UNB - SANITÁRIOS

Quantity	Luminaire (Luminous emittance)		
13	Lumicenter Lighting - EF08-E226VJ Luminous emittance 1 Fitting: 2xFluorescente compacta 26W Light output ratio: 47.14% Lamp luminous flux: 3600 lm Luminaire luminous flux: 1697 lm Power: 57.0 W Luminous efficacy: 29.8 lm/W Colourimetric data 2x: CCT 3000 K, CRI 100	See our luminaire catalog for an image of the luminaire.	
3	Lumicenter Lighting Group - FAA20-E228 Luminous emittance 1 Fitting: 2xFluorescente Tubular Light output ratio: 75.97% Lamp luminous flux: 5200 lm Luminaire luminous flux: 3950 lm Power: 62.0 W Luminous efficacy: 63.7 lm/W Colourimetric data 2x: CCT 3000 K, CRI 100	See our luminaire catalog for an image of the luminaire.	

Total lamp luminous flux: 62400 lm, Total luminaire luminous flux: 33911 lm, Total Load: 927.0 W, Luminous efficacy: 36.6 lm/W

UNB - SANITÁRIOS / Control group commissioning

UNB - SANITÁRIOS

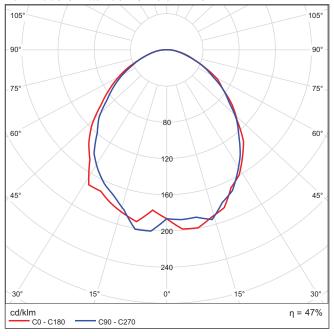
No. Control group		Luminaire
1	Grupo de controlo 3	3 x Lumicenter Lighting Group - FAA20-E228
2	Grupo de controlo 12	13 x Lumicenter Lighting - EF08-E226VJ

Cenário de Luz 1

Control group	Dimming values	Control group	Dimming values
Grupo de controlo 3	100%	Grupo de controlo 12	100%

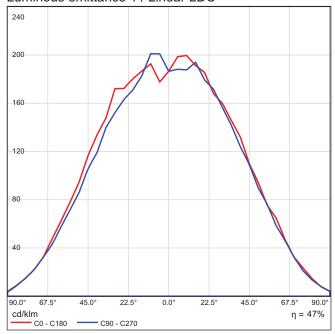
UNIB - SANITÁRIOS / Edificio 1 / Andar 1 / Lumicenter Lighting EF08-E226VJ 2xFluorescente compacta 26W / Lumicenter Lighting - EF08-E226VJ (2xFluorescente compacta 26W)

Lumicenter Lighting EF08-E226VJ 2xFluorescente compacta 26W

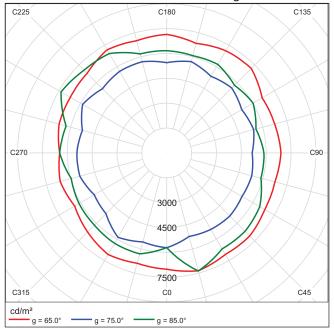

See our luminaire catalog for an image of the luminaire.

Light output ratio: 47.14% Lamp luminous flux: 3600 lm Luminaire luminous flux: 1697 lm Power: 57.0 W

Luminous efficacy: 29.8 lm/W


Colourimetric data 2x: CCT 3000 K, CRI 100

Luminous emittance 1 / Polar LDC


Luminous emittance 1 / Linear LDC

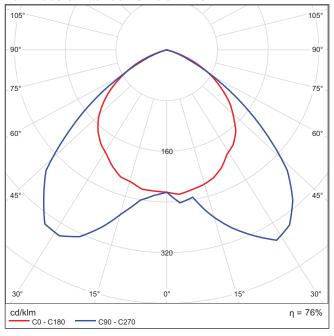
It is not possible to generate a cone diagram, as the light distribution is asymmetrical.

Luminous emittance 1 / Luminance diagram

It is not possible to generate a UGR diagram, as the light distribution is asymmetrical.

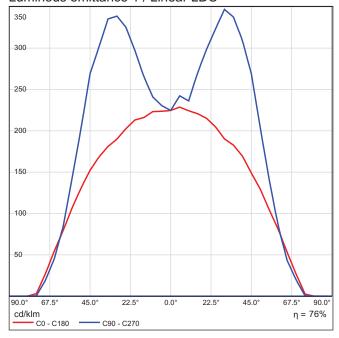
UNIB - SANITÁRIOS / Edifício 1 / Andar 1 / Lumicenter Lighting Group FAA20-E228 2xFluorescente Tubular / Lumicenter Lighting Group - FAA20-E228 (2xFluorescente Tubular)

Lumicenter Lighting Group FAA20-E228 2xFluorescente Tubular


See our luminaire catalog for an image of the luminaire.

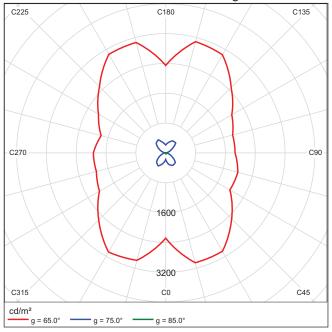
Light output ratio: 75.97% Lamp luminous flux: 5200 lm Luminaire luminous flux: 3950 lm Power: 62.0 W

Luminous efficacy: 63.7 lm/W


Colourimetric data 2x: CCT 3000 K, CRI 100

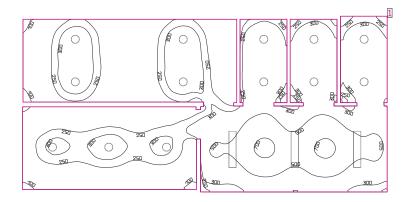
Luminous emittance 1 / Polar LDC

Luminous emittance 1 / Linear LDC



It is not possible to generate a cone diagram, as the light distribution is asymmetrical.

UNIB - SANITÁRIOS / Edifício 1 / Andar 1 / Lumicenter Lighting Group FAA20-E228 2xFluorescente Tubular / Lumicenter Lighting Group - FAA20-E228 (2xFluorescente Tubular)


Luminous emittance 1 / Luminance diagram

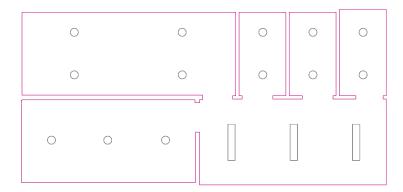
It is not possible to generate a UGR diagram, as the light distribution is asymmetrical.

Sala 1

Clearance height: 2.400 m, Reflection factors: Ceiling 70.0%, Walls 50.0%, Floor 20.0%, Maintenance factor: 0.80

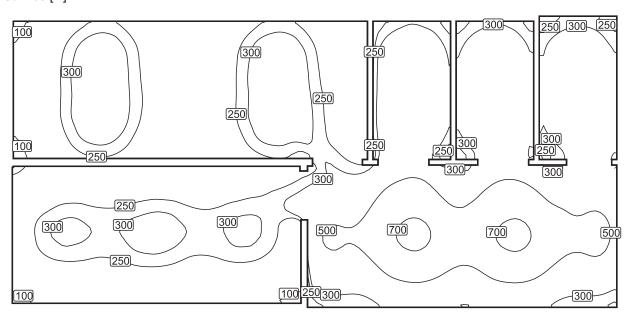
Workplane

Surface	Result	Average (Target)	Min	Max	Min/average	Min/max
1 Plano de uso 1	Perpendicular illuminance (adaptive) [lx] Height: 0.800 m, Wall zone: 0.000 m	321 (≥ 500)	84.1	735	0.26	0.11


# Luminaire	Φ(Luminaire) [lm]	Power [W]	Luminous efficacy [lm/W]
13 Lumicenter Lighting - EF08-E226VJ	1697	57.0	29.8
3 Lumicenter Lighting Group - FAA20-E228	3950	62.0	63.7
Total via all luminaires	33911	927.0	36.6

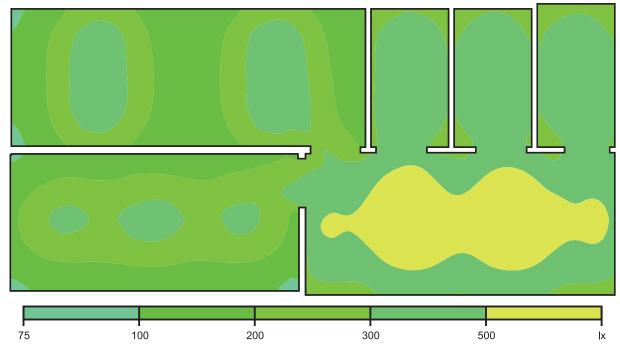
Lighting power density: $14.15 \text{ W/m}^2 = 4.41 \text{ W/m}^2/100 \text{ lx}$ (Floor area of room 65.50 m²)

The energy consumption quantities refer to the lights planned for the room without taking into account light scenes and their dimming levels. Consumption: 2550 kWh/a of maximum 2300 kWh/a

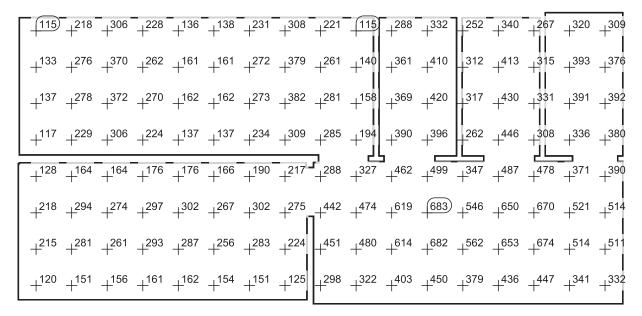

Plano de uso 1 / Perpendicular illuminance (adaptive)

Plano de uso 1: Perpendicular illuminance (adaptive) (Surface) Light scene: Cenário de Luz 1 Average: 321 lx (Target: ≥ 500 lx), Min: 84.1 lx, Max: 735 lx, Min/average: 0.26, Min/max: 0.11

Height: 0.800 m, Wall zone: 0.000 m


Isolines [lx]

Scale: 1:75



False colours [lx]

Scale: 1:75

Value grid [lx]

Scale: 1:75

Data: abril de 2018 Revisão: 00 Página: 9 de 10

ANEXO 02 – DIMENSIONAMENTO DE CIRCUITOS ELÉTRICOS

Página:1

13/04/2018

OS12 - UNB SANITÁRIOS ICC Projeto:

Circuito: OD-ITS

Dados de entrada

Maneira de instalar: Eletroduto aparente de seção circular

Sistema: Trifásico+Terra(3F+N+T)(Equil)

Cabo: Cabo EPROTENAX 0,6/1kV unipolar

Número de condutores por fase : Automático Seção nominal do condutor : Automática Seção mínima de cada condutor: 2.5 mm2

30 oC Temperatura ambiente: 0 % Conteúdo de harmônicas:

Dispensada verificação contra contatos indiretos

Dispensada verificação contra sobrecarga

Comprimento do circuito 80.0 m 2.00 % Queda de tensão máxima admitida: Tensão fase/fase: 380 V 219.39 V Tensão fase/neutro: Fator de correção de agrupamento : Automático Corrente c.c. presumida (Ikmax): 10.0 kA

5 Número de circuitos ou de cabos multipolares

Cargas não motor consideradas

12t de cada condutor para Ikmax :

Número de	Potência ativa	Fator de	Fator de
cargas iguais	(W)	potência	demanda
1	3.790,00	0,93	

Corrente do circuito: 5.6 A Fator de potência do circuito : 0.93 Fator de demanda: 1.00

Valores calculados

Seção nominal dos condutores : 1 x 2.5 mm2

Critério de dimensionamento: Queda de tensão

Capacidade de condução de corrente : 1 x 16.8 A

Fator de correção de agrupamento : 0.60 Fator de correção de temperatura : 1.00

Resistência em CA de cada condutor : 9.4485 ohm/km Reatância indutiva de cada condutor : 0.1518 ohm/km

Queda de tensão efetiva: 1.80 %

Icc presumida mínima ponto extremo (Ikmin) : 1.02e+002 A 1.29e+005 A

Os resultados apresentados foram baseados nas características dos produtos fabricados pela Prysmian

DIMENSIONAMENTO DE CIRCUITOS ELÉTRICOS 4.0

Página: 2 13/04/2018

Projeto: OS12 - UNB SANITÁRIOS ICC

Circuito: QD-ITS

12t de cada condutor para Ikmin : 7.84e+005 A

Tempo máximo para atuação da proteção para Ikmax : 1.29e-003 s

Seção nominal do condutor neutro : 1 x 2.5 mm2

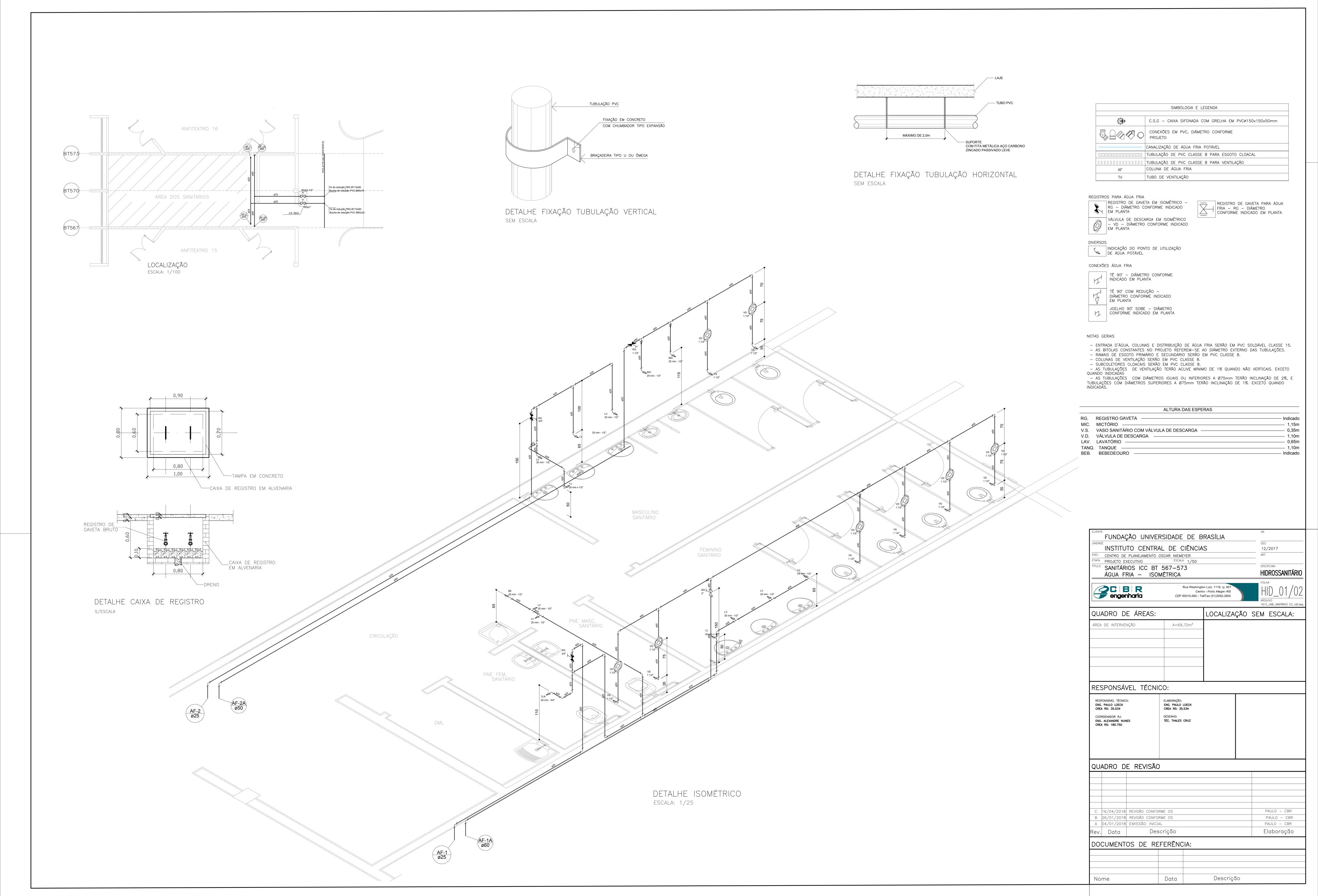
Ver condições para redução do condutor neutro

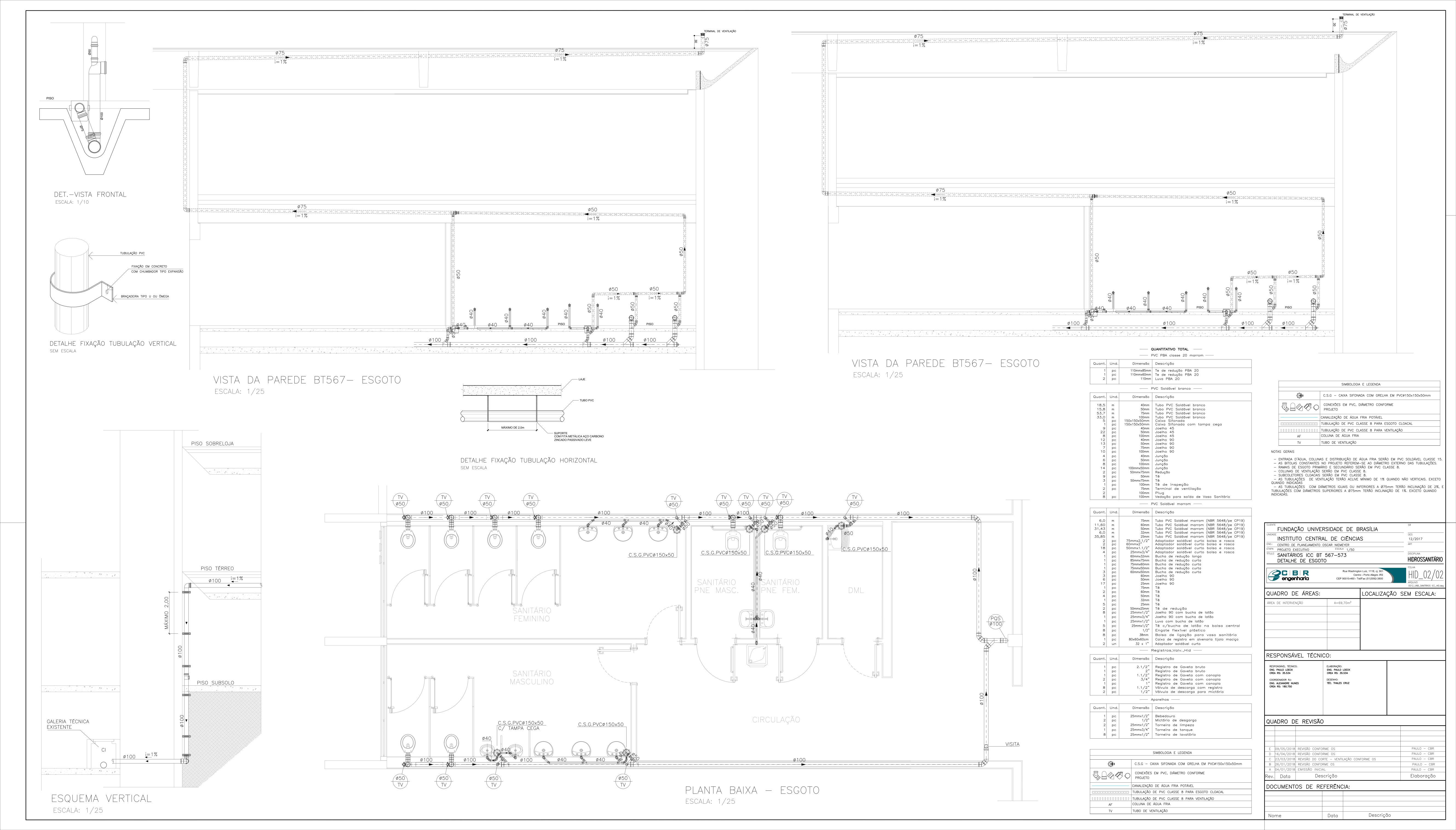
na NBR5410/2004.

Seção nominal do condutor de proteção : 2.5 mm2

Data: abril de 2018 Revisão: 00 Página: 10 de 10

ASSINATURAS RESPONSÁVEIS TÉCNICOS:




Eng. Alexandre Ribeiro Nunes

CREA RS 180.750

Responsável projeto elétrico

